Lorsqu'un éclair apparait dans le ciel, sa lumière nous parvient presque instantanément. Quelques secondes plus tard, le son nous arrive. Pour connaître la distance approximative, en kilomètres, entre nous et l'impact de la foudre, on dit qu'il suffit de diviser le temps entre l'éclair et le son par 3. Par exemple, si le bruit de l'éclair arrive au bout de 6 secondes, alors l'éclair s'est produit à
\dfrac{6}{3} = 2 kilomètres. Nous allons essayer de vérifier cela.
1. On suppose que l'impact a eu lieu à 10 km. La vitesse de la lumière est de l'ordre de 300 000 km/s, celle du son de 330 m/s. Calcule pour la lumière le temps (en s) mis pour parcourir ces 10 km. Arrondis la valeur au millionième.Calcule, pour le son, le temps (en s) mis pour parcourir ces 10 km. Arrondis la valeur au dixième.
2. En comparant ces deux durées, que penses-tu de l'hypothèse disant que la lumière arrive presque instantanément par rapport au son ?
3. Divise maintenant par 3 le temps trouvé pour le son et compare le résultat avec la distance choisie (10 km).
4. L'hypothèse donnée dans le texte pour le calcul est-elle bonne ?
5. Lors d'un orage, un premier éclair te parvient 7 secondes après la foudre. En utilisant la technique que nous venons de vérifier, calcule la distance approximative en kilomètres (arrondie au dixième).
6. Trois minutes plus tard, ce temps n'est plus que de 4 secondes. Calcule la nouvelle distance (arrondie au dixième). N'est-il pas temps de débrancher les appareils électriques sensibles ?