Soient n et k deux entiers naturels tels que k \leqslant n. Alors :
1.\left(\begin{array}{l}n\\k\end{array}\right)=\frac{n !}{k !(n-k) !} et \left(\begin{array}{c}n \\k\end{array}\right)=\left(\begin{array}{c}n \\n-k\end{array}\right).
2. Relation de Pascal : si 1 \leqslant k \leqslant n-1,\left(\begin{array}{l}n \\k\end{array}\right)=\left(\begin{array}{l}n-1 \\k-1\end{array}\right)+\left(\begin{array}{c}n-1 \\k\end{array}\right).
3. De plus,\left(\begin{array}{l}n \\0\end{array}\right)=1. Si n \geqslant 1,\left(\begin{array}{l}n \\1\end{array}\right)=n et si n \geqslant 2,\left(\begin{array}{l}n \\2\end{array}\right)=\frac{n(n-1)}{2}.