Raisonnons par l'absurde et supposons que \frac{1}{3} est décimal.
Il existe alors un entier relatif a et un entier relatif b tels que \frac{1}{3}=\frac{a}{10^{b}}.
Ainsi, 3 \times a=10^{b}, ce qui signifie que 10^b est un multiple de 3 : la somme de ses chiffres doit donc être divisible par 3, ce qui est absurde. En effet, la somme des
chiffres de 10^b est toujours égale à 1 et n'est donc pas divisible par 3.
L'hypothèse « \frac{1}{3} est décimal. » est donc fausse et ainsi \frac{1}{3} n'est pas décimal.