Mathématiques Terminale Bac Pro - Cahier

Retourner à l'accueil

Rejoignez la communauté !
Co-construisez les ressources dont vous avez besoin et partagez votre expertise pédagogique.
Mes Pages
Partie 1 : Statistique et probabilités
Ch. 1
Statistiques à deux variables
Ch. 2
Probabilités
Partie 2 : Algèbre - Analyse
Ch. 3
Suites numériques
Ch. 4
Fonctions polynômes de degré 3
Ch. 6
Calculs commerciaux et financiers
Partie 3 : Géométrie
Ch. 7
Vecteurs
Ch. 8
Trigonométrie
Annexes
Révisions Genially
Consolidation
Poursuite d'études
Annexes
Programmation
Cahier d'algorithmique et de programmation
Chapitre 5
Applications

Fonctions exponentielles et logarithme décimal

Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.

1
Méthode

Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.

Représenter et étudier des fonctions exponentielles de base \boldsymbol{q}: \boldsymbol{x} \mapsto \boldsymbol{q}^{\boldsymbol{x}}

Utiliser les propriétés opératoires des exponentielles.
Soient q un réel strictement positif et différent de 1, x et y deux nombres réels.
On peut simplifier l'écriture de certaines expressions grâce aux propriétés suivantes.
  • q^{x} \times q^{y}=q^{x+y}

  • q^{-x}=\frac{1}{q^{x}}

  • \frac{q^{x}}{q^{y}}=q^{x-y}

  • \left(q^{x}\right)^{y}=q^{x \times y}

courbe1
         
courbe2


Cas q > 1 (à gauche) et cas 0 \lt q \lt 1 (à droite).

Déterminer si une fonction exponentielle est croissante ou décroissante.

1. Déterminer la valeur de q dans l'expression f(x) = q^{x}.
2. Si q > 1, la fonction est croissante sur \R.
Si q \lt 1, la fonction est décroissante sur \R.
Si q = 1, la fonction est constante sur \R et est égale à 1.
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.

Représenter et étudier la fonction logarithme décimale : \boldsymbol{x} \mapsto \log (\boldsymbol{x})

Soient n un entier relatif, a et b deux réels strictement positifs.
On peut simplifier l'écriture de certaines expressions grâce aux propriétés suivantes.
  • \log (a \times b)=\log (a)+\log (b)
  • \log \left(\frac{a}{b}\right)=\log (a)-\log (b)
  • \log \left(a^{n}\right)=n \log (a)
courbe
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.

Résoudre des équations ou des inéquations du type \boldsymbol{q}^{\boldsymbol{x}}=\boldsymbol{a}, \log (\boldsymbol{x})=\boldsymbol{a}, \boldsymbol{q}^{x} \geqslant \boldsymbol{a} \text { ou } \log (\boldsymbol{x}) \geqslant \boldsymbol{a}

1. Suivant la situation, utiliser le fait que 10^{\log (x)}=x \text { ou que } \log \left(q^{x}\right)=x \log (q).
2. Dans le cas d'une inéquation, attention à bien changer le sens de l'inégalité lors d'une division par un nombre négatif. En particulier, il faut être vigilant au signe des logarithmes décimaux : \log(a) est positif si a > 1, mais négatif si 0 \lt a \lt 1 .

Exemples :
\begin{aligned} 5^{x} &=3 \\ \log \left(5^{x}\right) &=\log (3) \\ x \log (5) &=\log (3) \\ x &=\frac{\log (3)}{\log (5)} \end{aligned}\begin{aligned} 0{,}5^{x} & \geqslant 4 \\ \log \left(0{,}5^{x}\right) & \geqslant \log (4) \\ x \log (0{,}5) & \geqslant \log (4) \\ x & \leqslant \frac{\log (4)}{\log (0{,}5)} \\ \operatorname{car} \log (0{,}5) \lt 0 . \end{aligned}\begin{aligned} \log (x) &=3 \\ 10^{\log (x)} &=10^{3} \\ x &=10^{3} \\ x &=1\,000 \end{aligned}
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.

2
Mise en pratique

Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.

#Auto-évaluation

QCM
Une ou plusieurs bonnes réponses possibles.

1. Soit f la fonction définie sur \R par f(x) = 0{,}99^{x}. f est une fonction :





2. 10^{\log (7)}est égal à :





3. 3^{1,4} \times 3^{2,6}=3^{4}


4. \log \left(10^{4,5}\right) est égal à :





5. Si f(x)=2 \times 5^{3 x}, alors \frac{f(x+1)}{f(x)} est égal à :





6. \log \left(\frac{1}{2-\sqrt{3}}\right) est égal à :




7. L᾽équation 1{,}1^{x} = 2 a pour solution :




8. La fonction f définie sur ] 0 \;;+\infty[ par f(x)=\log (5 x) :



Afficher la correction
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.

Genially

Réviser les notions de ce chapitre grâce à cette activité interactive.
Logo Genially

Genially


Pour une utilisation optimale, réaliser l'activité en plein écran.

Une erreur sur la page ? Une idée à proposer ?

Nos manuels sont collaboratifs, n'hésitez pas à nous en faire part.

j'ai une idée !

Oups, une coquille

Utilisation des cookies
Lors de votre navigation sur ce site, des cookies nécessaires au bon fonctionnement et exemptés de consentement sont déposés.