Ressource affichée de l'autre côté. Faites défiler pour voir la suite.
64
[Modéliser.]
On donne ci-dessous le relevé de consommation en carburant d'une voiture à boîte automatique à 5 vitesses (numérotées de 1 à 5 sur le graphique).
Le zoom est accessible dans la version Premium.
1. Déterminer la consommation en carburant lorsqu'une voiture roule à 30 km/h, 50 km/h, 80 km/h et 130 km/h.
2. À quelles vitesses la voiture consomme-t-elle : 5 L/100 km ? 6 L/100 km ? 6,5 L/100 km ?
3. Une conductrice fait le plein de carburant (réservoir de 70 L) et doit parcourir 1 200 km sur autoroute.
a. Si elle roule à la vitesse constante de 130 km/h, aura-t-elle assez de carburant ?
b. Si elle roule à vitesse constante, à quelle vitesse peut-elle rouler au maximum pour ne pas tomber en panne ?
4. La conductrice se déplace entre les bornes \text{A} et \text{D} sur autoroute à une vitesse constante de 130 km/h. Cependant, entre les bornes \text{B} et \text{C}, la vitesse est limitée à 90 km/h.
Le zoom est accessible dans la version Premium.
On note x la distance parcourue en km et f(x) le volume de carburant consommé. On a représenté ci-dessous la courbe représentative de f dans un repère orthogonal.
Le zoom est accessible dans la version Premium.
a. En utilisant les points \text{A}, \text{B}, \text{C} et \text{D} placés sur cette courbe, retrouver les consommations correspondant aux vitesses de 130 km/h et 90 km/h.
b. Si la voiture contient 30 L d'essence au départ de \text{A}, la conductrice pourra-t-elle arriver en \text{D} sans avoir à remettre de l'essence ?
c. Pour éviter de se retrouver en panne, la conductrice décide de se ravitailler lorsqu'il lui reste 15 L dans son réservoir : à quelle distance de \text{D} devra-t-elle se ravitailler ?
Afficher la correction
Ressource affichée de l'autre côté. Faites défiler pour voir la suite.
65
[Représenter.]
La partie inscriptible d'un CD audio est une couronne de rayons 25 et 55 mm. Un faisceau laser lit la musique en allant de l'intérieur de cette couronne vers l'extérieur.
Le zoom est accessible dans la version Premium.
On note x la distance en millimètre du laser au bord du cercle intérieur après lecture d'une partie de la musique.
1. À quel intervalle \text{I} appartient x ?
2.a. Justifier que l'aire \mathrm{S}(x) de la couronne de largeur x est égale à \mathrm{S}(x)=\pi(25+x)^{2}-\pi \times 25^{2}. En déduire que, pour tout x \in \mathrm{I}, \mathrm{S}(x)=\pi x^{2}+50 \pi x.
b. Calculer \mathrm{S}(0) : ce résultat est-il prévisible ?
c. Montrer que \mathrm{S}(30)=2\,400 \pi et interpréter le résultat.
3. D'un bord de la couronne à l'autre, le CD contient 80 min de musique. Sachant que la durée en minute de lecture audio \mathrm{D}(x) est proportionnelle à l'aire \mathrm{S}(x), on peut montrer que, pour tout x \in[0 \:; 30],\mathrm{D}(x)=80 \times \dfrac{\mathrm{S}(x)}{\mathrm{S}(30)}=\dfrac{1}{30}\left(x^{2}+50 x\right).
On a tracé ci-dessous la courbe représentative de \text{D} sur [0\:; 30].