\mathrm{ P(A) \neq 0} donc \mathrm{P_{A}(B)=\dfrac{P(A \cap B)}{P(A)}}.
Sens direct : \text{A} et \text{B} sont des événements indépendants, donc
\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B}), d'où \mathrm{P}_{\mathrm{A}}(\mathrm{B})=\dfrac{\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})}{\mathrm{P}(\mathrm{A})}=\mathrm{P}(\mathrm{B}).
Réciproque : \mathrm{P_{A}(B)=P(B)} donc \mathrm{P}(\mathrm{A}) \times \mathrm{P}_{\mathrm{A}}(\mathrm{B})=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B}), d'où \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B}), ce qui montre \text{A} et \text{B} sont indépendants.