Mathématiques Expertes Terminale

Rejoignez la communauté !
Co-construisez les ressources dont vous avez besoin et partagez votre expertise pédagogique.
Nombres complexes
Ch. 1
Nombres complexes, point de vue algébrique
Arithmétique
Ch. 3
Divisibilité dans Z
Ch. 4
PGCD et applications
Ch. 5
Nombres premiers
Graphes et matrices
Ch. 6
Calcul matriciel et applications aux graphes
Ch. 7
Suites et matrices
Annexes
Cahier d'algorithmique et de programmation
Chapitre 2
Entraînement 3

Applications géométriques des nombres complexes

15 professeurs ont participé à cette page
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
Différenciation
Parcours 1 : exercices  ;  ;  ;  ;  ;  ;  ; et
Parcours 2 : exercices  ;  ;  ;  ;  ;  ; et
Parcours 3 : exercices  ;  ;  ;  ;  ;  ; et
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
109
Flash

Soient \text{A}, \text{B} et \text{C} trois points distincts du plan complexe d'affixe respective a, b et c.
Expliciter deux méthodes permettant de démontrer que ces points sont alignés.
Afficher la correction
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
110
Flash

Soient \text{A}, \text{B}, \text{C} et \text{D} quatre points du plan complexe d'affixe respective a, b, c et d.
On suppose que \text{ABCD} est un trapèze de base [\mathrm{AB}] et [\mathrm{CD}] vérifiant \mathrm{AB}=3 \mathrm{CD}.
Traduire les données de l'énoncé en utilisant les affixes des quatre points.
Afficher la correction
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
111
Flash

1. Écrire sous forme exponentielle et algébrique les racines quatrièmes de l'unité.

2. Les nombres complexes obtenus correspondent à l'affixe de points formant un polygone particulier. Lequel ?
Afficher la correction
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
112
[Calculer.]

Soient \text{A}, \text{B} et \text{C} trois points du plan complexe d'affixe respective a=4+\mathrm{i}, b=1+3\mathrm{i} et c=4-\frac{5}{2} \mathrm{i}. 1. Calculer la longueur \text{AB}.

2.Le point \text{C} appartient‑il au cercle de centre \text{A} passant par \text{B} ?
Afficher la correction
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
113
[Calculer.]

Soient \text{A}, \text{B} et \text{C} trois points du plan complexe d'affixe respective a=\sqrt{2}+\mathrm{i} \sqrt{2}, b=2-2 \mathrm{i} \sqrt{3} et c=\frac{\sqrt{2}-\sqrt{6}}{2}-2+\left(\frac{\sqrt{2}+\sqrt{6}}{2}-2 \sqrt{3}\right)\mathrm{i}. Déterminer la nature du triangle \text{ABC}.

Aide
On calculera des longueurs avant d'essayer de calculer des angles.
Afficher la correction
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
114
[Communiquer.]
Soient \text{A}, \text{B}, \text{C} et \text{D} quatre points du plan complexe d'affixe respective a=3-2 \mathrm{i}, b=\mathrm{i}-1, c=-1-2 \mathrm{i} et d=1-\frac{1}{2} \mathrm{i}. 1. Calculer les longueurs \text{AD,} \text{BD} et \text{CD}.

2. Que représente \text{D} pour le triangle \text{ABC} ?
Afficher la correction
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
115
[Communiquer.]

Soient \text{A}, \text{B} et \text{C} trois points du plan complexe d'affixe respective a=\frac{8}{3}-\frac{\sqrt{3}}{2}+\frac{11}{6} \mathrm{i}, b=\frac{3 \sqrt{3}}{2}-\frac{3}{2} \mathrm{i} et c=2+\mathrm{i}. 1. Calculer \frac{b-c}{a-c}.

2. Que peut‑on en conclure concernant les points \text{A}, \text{B} et \text{C} ?
Afficher la correction
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
116
[Chercher.]
D'après bac S, Centres étrangers, juin 2018
On considère dans \mathbb{C} l'équation suivante : \left(4 z^{2}-20 z+37\right)(2 z-7+2 \mathrm{i})=0.
Démontrer que les solutions de cette équation sont les affixes de points appartenant à un même cercle, dont le centre est le point \text{P} d'affixe 2.

Aide
Commencer par résoudre l'équation.
Afficher la correction
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
117
[Chercher.] 1. Résoudre dans \mathbb{C} l'équation (\mathrm{E}): z^{2}-2 \sqrt{3} z+4=0.

2. Déterminer la nature du triangle \text{OAB}, où \text{O}, \text{A} et \text{B} sont respectivement le point d'affixe 0 et les deux solutions de (\mathrm{E}).
Afficher la correction
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
118
[Calculer.]
Soient \text{A}, \text{B} et \text{C} trois points du plan complexe d'affixe respective a=2+\mathrm{i}, b=4-\mathrm{i} et c=-2-3 \mathrm{i}. 1. Calculer \frac{a-b}{c-a}.

2. Que peut‑on en conclure concernant les droites (\mathrm{AB}) et (\mathrm{AC}) ?
Afficher la correction
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
119
[Calculer.]
Soient \text{A}, \text{B} et \text{C} trois points du plan complexe d'affixe respective a, b et c=3+5(1-\sqrt{3}) \mathrm{i}.

Maths expertes - chapitre 2 - Nombres complexes, point de vue géométrique - exercice 119
Le zoom est accessible dans la version Premium.

1. Déterminer graphiquement les affixes a et b.

2. Déterminer une mesure en radian des angles (\overrightarrow{\mathrm{BC}} ; \overrightarrow{\mathrm{BA}}) et (\overrightarrow{\mathrm{AB}} ; \overrightarrow{\mathrm{AC}}).

3. En déduire une mesure en radian de l'angle géométrique \widehat{\mathrm{BCA}}.
Afficher la correction
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
120
[Calculer.]
Soient \text{A}, \text{B}, \text{C} et \text{D} quatre points du plan complexe d'affixe respective a=4+2 \mathrm{i}, b=2-2 \mathrm{i}, c=1+2 \mathrm{i} et d=-2-4 \mathrm{i}. 1. Calculer \frac{a-b}{c-d}.

2. Que peut‑on en conclure concernant les droites (\mathrm{AB}) et (\mathrm{CD}) ?
Afficher la correction
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
121
[Chercher.] Relier chaque ensemble (\text{E}) à la relation correspondante.
Ensemble (\text{E})Relation
1. Médiatrice de [\mathrm{AB}] avec \mathrm{A}(-1-3 \mathrm{i}) et \mathrm{B}(2+\mathrm{i}).
2. Cercle de centre \mathrm{A}(3-4 \mathrm{i}) et de rayon \sqrt3.
3. Médiatrice de [\mathrm{AB}] avec \mathrm{A}(1+3 \mathrm{i}) et \mathrm{B}(-2-\mathrm{i}).
4. Point d'affixe -3+4 \mathrm{i}.
5. Cercle de centre \mathrm{A}(-3+4 \mathrm{i}) et de rayon \sqrt3.
6. Cercle de centre \mathrm{A}(0) et de rayon \sqrt3.
Afficher la correction
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
122
[Représenter.]
Déterminer puis représenter graphiquement l'ensemble (\mathrm{E}) des points \text{M} du plan complexe d'affixe z vérifiant :
1. \left|z-2+\frac{3}{4} \mathrm{i}\right|=3

2. |z+4-\sqrt{3} \mathrm{i}|=|z-\mathrm{i}|

3. |z+\mathrm{i}-3|=-2

4. |z+1-3 \mathrm{i}|=|2-4 \mathrm{i}-z|

5. |z+5-2 \mathrm{i}|=0

6. |z-3 \mathrm{i}-2|=|1-5 \mathrm{i}|

Logo Geogebra

GeoGebra

Vous devez vous connecter sur GeoGebra afin de sauvegarder votre travail
Afficher la correction
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
123
[Représenter.]

Déterminer puis représenter graphiquement l'ensemble (\mathrm{E}) des points \text{M} du plan complexe d'affixe z vérifiant :
1. \left|\overline{z}-2+\frac{3}{4} \mathrm{i}\right|=3

2. |\mathrm{i} z-2 \mathrm{i}|=1

3. |3 \mathrm{i} z|=|3 \mathrm{i} z+3-9 \mathrm{i}|

4. |\overline{z}-1+\mathrm{i}|=|\overline{z}-5+\mathrm{i}|

Logo Geogebra

GeoGebra

Vous devez vous connecter sur GeoGebra afin de sauvegarder votre travail
Afficher la correction
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
124
Flash
[Raisonner.]
Soient z et z^\prime deux nombres complexes appartenant à \mathbb{U}. 1. Montrer que z z^\prime appartient à \mathbb{U}.

2. Justifier que z et z^\prime ne peuvent pas être nuls puis montrer que \frac{z}{z^{\prime}} appartient à \mathbb{U}.
Afficher la correction
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
125
[Représenter.]
On considère dans le plan complexe les points \mathrm{A}_k d'affixe \mathrm{e}^{\normalsize{\tfrac{2 \mathrm{i} k \pi}{7}}}, où k entier compris entre 0 et 6.
Quelle est la nature du polygone \mathrm{A}_0 \mathrm{A}_1 \mathrm{A}_2 \mathrm{A}_3 \mathrm{A}_4 \mathrm{A}_5 \mathrm{A}_6 ?
Afficher la correction
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
126
[Calculer.]

On considère le nombre complexe j=-\frac{1}{2}+\frac{\mathrm{i} \sqrt{3}}{2}.
Démontrer que j et j^2 sont des racines troisièmes de l'unité.
Afficher la correction
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
127
[Raisonner.]

1. Résoudre dans \mathbb{C} l'équation z^5 = 1.

2. a. Montrer que résoudre dans \mathbb{C} l'équation z^{5}=(1+\mathrm{i})^{5} revient à résoudre l'équation \mathrm{Z}^{5}=1, où \mathrm{Z} est à exprimer en fonction de z.

b. Résoudre dans \mathbb{C} l'équation z^{5}=(1+\mathrm{i})^{5}.
Afficher la correction
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
128
[Raisonner.]
Montrer que z appartient à \mathbb{U} si, et seulement si, \overline{z}=\frac{1}{z}.
Afficher la correction
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
129
[Raisonner.] Soient a, b et c trois nombres complexes appartenant à \mathbb{U}.
Montrer que |a b+b c+c a|=|a+b+c|.
Afficher la correction
Ressource affichée de l'autre côté.
Faites défiler pour voir la suite.
130
[Raisonner.]

Soit z un nombre complexe appartenant à \mathbb{U}.
Calculer |1+z|^{2}+|1-z|^{2}.
Afficher la correction

Une erreur sur la page ? Une idée à proposer ?

Nos manuels sont collaboratifs, n'hésitez pas à nous en faire part.

Oups, une coquille

j'ai une idée !

Nous préparons votre pageNous vous offrons 5 essais

Yolène
Émilie
Jean-Paul
Fatima
Sarah
Utilisation des cookies
Lors de votre navigation sur ce site, des cookies nécessaires au bon fonctionnement et exemptés de consentement sont déposés.